
The pearl metastasizes as a means of protection. Irritants carried by saltwater are now carried by gloved hand, laid on tongue and made to glitter, we choose these spaces where beauty occupies. We find new ways to crystallize what is harmful and beloved. The evidence of our lives outlasts us, the presence of our childhoods exist in plastic which withers endlessly yet refuses to disappear. we grow so quickly and hold old gifts in new hands on the turning of the months. The pearl forms on microscopic levels and becomes visible to us as a gift of the light where no harm enters.
︎Welcome ︎︎︎
Works Cited
Bhat, A. (2012). Bacterial production of poly-γ-glutamic acid and evaluation of its effect on the viability of probiotic microorganisms.
Kane, S., Thane, A., Espinal, M., Lunday, K., Armağan, H. H., Phillips, A. A., Heveran, C. M., & Ryan, C. (2021). Biomineralization of Plastic Waste to Improve the Strength of Plastic-Reinforced Cement Mortar. Materials, 14(8), 1949.
https://doi.org/10.3390/ma14081949
Nagai, K. (2013). A History of the Cultured Pearl Industry. Zoological Science, 30(10), 783–793.
https://doi.org/10.2108/zsj.30.783
Spiesz, E. M., Schmieden, D. T., Grande, A. J., Liang, K., Pahr, D. H., Natalio, F., Michler, J., Garcia, S., Aubin-Tam, M., & Meyer, A. S. (2019). Bacterially Produced, Nacre-Inspired Composite Materials. Small, 1805312. https://doi.org/10.1002/smll.201805312
Yu, K., Spiesz, E. M., Balasubramanian, S., Schmieden, D. T., Meyer, A. S., & Aubin-Tam, M. (2021). Scalable bacterial production of moldable and recyclable biomineralized cellulose with tunable mechanical properties. Cell Reports Physical Science, 2(6), 100464.
https://doi.org/10.1016/j.xcrp.2021.100464
Yu, K., & Aubin-Tam, M. (2020). Bacterially Grown Cellulose/Graphene Oxide Composites Infused with γ-Poly (Glutamic Acid) as Biodegradable Structural Materials with Enhanced Toughness. ACS Applied Nano Materials, 3(12), 12055–12063.
https://doi.org/10.1021/acsanm.0c02565
Han, Zaiming, Taifeng Jiang, Liping Xie, and Rongqing Zhang. “Microplastics Impact Shell and Pearl Biomineralization of the Pearl Oyster Pinctada Fucata.” Environmental Pollution 293 (2022): 118522. https://doi.org/10.1016/j.envpol.2021.118522.
Kane, S., Thane, A., Espinal, M., Lunday, K., Armağan, H. H., Phillips, A. A., Heveran, C. M., & Ryan, C. (2021). Biomineralization of Plastic Waste to Improve the Strength of Plastic-Reinforced Cement Mortar. Materials, 14(8), 1949.
https://doi.org/10.3390/ma14081949
Nagai, K. (2013). A History of the Cultured Pearl Industry. Zoological Science, 30(10), 783–793.
https://doi.org/10.2108/zsj.30.783
Spiesz, E. M., Schmieden, D. T., Grande, A. J., Liang, K., Pahr, D. H., Natalio, F., Michler, J., Garcia, S., Aubin-Tam, M., & Meyer, A. S. (2019). Bacterially Produced, Nacre-Inspired Composite Materials. Small, 1805312. https://doi.org/10.1002/smll.201805312
Yu, K., Spiesz, E. M., Balasubramanian, S., Schmieden, D. T., Meyer, A. S., & Aubin-Tam, M. (2021). Scalable bacterial production of moldable and recyclable biomineralized cellulose with tunable mechanical properties. Cell Reports Physical Science, 2(6), 100464.
https://doi.org/10.1016/j.xcrp.2021.100464
Yu, K., & Aubin-Tam, M. (2020). Bacterially Grown Cellulose/Graphene Oxide Composites Infused with γ-Poly (Glutamic Acid) as Biodegradable Structural Materials with Enhanced Toughness. ACS Applied Nano Materials, 3(12), 12055–12063.
https://doi.org/10.1021/acsanm.0c02565
Han, Zaiming, Taifeng Jiang, Liping Xie, and Rongqing Zhang. “Microplastics Impact Shell and Pearl Biomineralization of the Pearl Oyster Pinctada Fucata.” Environmental Pollution 293 (2022): 118522. https://doi.org/10.1016/j.envpol.2021.118522.